CVE-2025-71109
MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits
Description
In the Linux kernel, the following vulnerability has been resolved: MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits Since commit e424054000878 ("MIPS: Tracing: Reduce the overhead of dynamic Function Tracer"), the macro UASM_i_LA_mostly has been used, and this macro can generate more than 2 instructions. At the same time, the code in ftrace assumes that no more than 2 instructions can be generated, which is why it stores them in an int[2] array. However, as previously noted, the macro UASM_i_LA_mostly (and now UASM_i_LA) causes a buffer overflow when _mcount is beyond 32 bits. This leads to corruption of the variables located in the __read_mostly section. This corruption was observed because the variable __cpu_primary_thread_mask was corrupted, causing a hang very early during boot. This fix prevents the corruption by avoiding the generation of instructions if they could exceed 2 instructions in length. Fortunately, insn_la_mcount is only used if the instrumented code is located outside the kernel code section, so dynamic ftrace can still be used, albeit in a more limited scope. This is still preferable to corrupting memory and/or crashing the kernel.
INFO
Published Date :
Jan. 14, 2026, 3:15 p.m.
Last Modified :
Jan. 14, 2026, 4:25 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2025-71109
vulnerability.
Even if cvefeed.io is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Apply the kernel patch addressing the instruction generation issue.
- Ensure the kernel is compiled with the fix.
- Test the system after applying the update.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-71109.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-71109 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-71109
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-71109 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-71109 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jan. 14, 2026
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits Since commit e424054000878 ("MIPS: Tracing: Reduce the overhead of dynamic Function Tracer"), the macro UASM_i_LA_mostly has been used, and this macro can generate more than 2 instructions. At the same time, the code in ftrace assumes that no more than 2 instructions can be generated, which is why it stores them in an int[2] array. However, as previously noted, the macro UASM_i_LA_mostly (and now UASM_i_LA) causes a buffer overflow when _mcount is beyond 32 bits. This leads to corruption of the variables located in the __read_mostly section. This corruption was observed because the variable __cpu_primary_thread_mask was corrupted, causing a hang very early during boot. This fix prevents the corruption by avoiding the generation of instructions if they could exceed 2 instructions in length. Fortunately, insn_la_mcount is only used if the instrumented code is located outside the kernel code section, so dynamic ftrace can still be used, albeit in a more limited scope. This is still preferable to corrupting memory and/or crashing the kernel. Added Reference https://git.kernel.org/stable/c/36dac9a3dda1f2bae343191bc16b910c603cac25 Added Reference https://git.kernel.org/stable/c/7f39b9d0e86ed6236b9a5fb67616ab1f76c4f150 Added Reference https://git.kernel.org/stable/c/e3e33ac2eb69d595079a1a1e444c2fb98efdd42d